Найдите значение выражения \frac{24}{sin^2 127°+4+sin^2 217°}.
Источники: fipi, Основная волна 2013.
Решение:
Упростим выражение используя свойства (4) и (1) из справочного материала ЕГЭ:
\frac{24}{sin^2 127°+4+sin^2 217°}=\frac{24}{sin^2 127°+4+sin^2 (127°+90°)}=\frac{24}{sin^2 127°+4+(sin (127°+90°))^{2}}=\frac{24}{sin^2 127°+4+(sin 127°\cdot cos90°+cos127°\cdot sin90°)^{2}}=\frac{24}{sin^2 127°+4+(sin 127°\cdot 0+cos127°\cdot 1)^{2}}=\frac{24}{sin^2 127°+4+cos^{2}127°}=\frac{24}{1+4}=\frac{24}{5}=4\frac{4}{5}=4,8
Ответ: 4,8.
Есть три секунды времени? Для меня важно твоё мнение!
Насколько понятно решение?
Средняя оценка: 0 / 5. Количество оценок: 0
Оценок пока нет. Поставь оценку первым.
Расскажи, что не так? Я исправлю в ближайшее время!
В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.