Постройте график функции y=\frac{(0,5x^{2}–2x)\cdot |x|}{x–4}.
Определите, при каких значениях m прямая у = m не имеет с графиком ни одной общей точки.

Источник: ОГЭ Ященко 2023 (36 вар)

Решение:

y=\frac{(0,5x^{2}–2x)\cdot |x|}{x–4}

ОДЗ: x – 4 ≠ 0 
x ≠ 4

y=\frac{(0,5x^{2}–2x)\cdot |x|}{x–4}=\frac{0,5x\cdot (x–4)\cdot |x|}{x–4}=0,5x\cdot |x|=\begin{cases} 0,5x\cdot (+x) \:{\color{Blue} ;x\ge 0} \\ 0,5x\cdot (–x)\:{\color{Blue} ;x<0} \end{cases}=\begin{cases} 0,5x^{2} \:{\color{Blue} ;x\ge 0} \\ -0,5x^{2}\:{\color{Blue} ;x<0} \end{cases}

    Найдём координату у точки не принадлежащей графику функции, подставив координата х = 4, в уравнение с условием х ≥ 0:

y(4)=0,5\cdot 4^{2}=0,5\cdot 16=8
А (4; 8) ∉ графику функции

    у = 0,5х2; х ≥ 0 – квадратичная функция, график парабола

x013
y00,54,5

    у = –0,5х2; х < 0 – квадратичная функция, график парабола

x–1–3–4
y–0,5–4,5–8

Определите, при каких значениях m прямая у = m не имеет с графиком ни одной общей точки.

    Прямая у = 8 не имеет с графиком ни одной общей точки.

Ответ: m = 8.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 4.4 / 5. Количество оценок: 11

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.