Сторона основания правильной треугольной пирамиды равна 14, а боковые рёбра равны 25. Найдите площадь боковой поверхности этой пирамиды.

Источник: Ященко ЕГЭ 2022 (30 вар).

Решение:

    Площадь боковой поверхности правильной треугольной пирамиды:

S=\frac{1}{2}Ph_{a}, где 

ha – апофема – высота боковой грани правильной пирамиды

    По теореме Пифагора находим апофему ha:

252 = 72 + ha2
ha2 = 252 – 72
ha2 = 625 – 49
ha2 = 576
ha = √576 = 24

    Периметр основания равен:

P = 14 + 14 + 14 = 3·14 = 42

    Найдём площадь боковой поверхности

S=\frac{1}{2}Ph_{a}=\frac{1}{2}\cdot 42\cdot 24=21\cdot 24=504

Ответ: 504.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 4 / 5. Количество оценок: 5

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время

В отзыве оставь контакт для связи, если хочешь, что бы я тебе ответил.