Найдите точку максимума функции y = ln(x + 4)2 + 2x + 7.
Решение:
y = ln(x + 4)2 + 2x + 7
ОДЗ: (x + 4)2 > 0 – всегда больше 0
(x + 4)2 ≠ 0
х ≠ –4
Найдем производную функции:
y^{′}=(ln(x+4)^{2})^{′}+(2x)^{′}+7^{′}=\frac{1}{(x+4)^{2}}\cdot ((x+4)^{2})^{′}+2+0=\frac{2\cdot (x+4)}{(x+4)^{2}}+2=\frac{2}{x+4}+2
Найдем нули производной:
\frac{2}{x+4}+2=0\\\frac{2}{x+4}=-2\\\frac{2}{x+4}=\frac{–2}{1}\\2\cdot 1=-2\cdot (x+4)\\2=-2x-8\\2+8=-2x\\x=\frac{10}{–2}=-5
Определим знаки производной функции и изобразим поведение функции (учитывая ОДЗ):
Точка максимума: х = –5.
Ответ: –5.
Есть три секунды времени? Для меня важно твоё мнение!
Насколько понятно решение?
Средняя оценка: 4.3 / 5. Количество оценок: 16
Оценок пока нет. Поставь оценку первым.
Расскажи, что не так? Я исправлю в ближайшее время!
В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.