Сторона основания правильной двенадцатиугольной пирамиды равна 6tg15°, а высота равна 4. Найдите расстояние от центра основания пирамиды до плоскости содержащей боковую грань пирамиды.

Решение:

    Изобразим часть правильной двенадцатиугольной пирамиды:

Сторона основания правильной двенадцатиугольной пирамиды

    Нам необходимо найти фиолетовый перпендикуляр проведённый к апофеме грани пирамиды.
    Рассмотрим синий треугольник (из начального рисунка). Он равнобедренный, угол вершины, по свойству правильной пирамиды равен:

360/12 = 30º

    Углы при основании равны по:

(180 – 30)/2 = 75º

Найдите расстояние от центра основания пирамиды

    Найдём высоту этого треугольника, через тангенс угла:

()

    Рассмотрим красный треугольник (из начального рисунка):

до плоскости содержащей боковую грань пирамиды.

    Он прямоугольный, в нём мы знаем две стороны 3 и 4, тогда третья сторона равна 5, т.к. это египетский треугольник (или по т.Пифагора).
    Через формулу площади треугольника, найдём фиолетовый перпендикуляр, который будет являться высотой этого треугольника:

Ответ: 2,4.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 5 / 5. Количество оценок: 4

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставляйте контакт, если хотите, что бы я вам ответил.

  • Рубрика записиЕГЭ Ларин