Основанием прямой призмы ABCDA1B1C1D1 является прямоугольник ABCD, стороны которого равны 6√5 и 12√5. Высота призмы равна 8. Секущая плоскость проходит через вершину D1 и середины рёбер AD и CD. Найдите косинус угла между плоскостью основания и плоскостью сечения.

Источник задания: alexlarin.net

Решение:

Основанием прямой призмы ABCDA1B1C1D1 является прямоугольник ABCD, стороны которого равны 6√5 и 12√5.

    В сечении получаем ΔPD1K.
    Опустили перпендикуляр D1H на прямую PK. Т.к. D1D⊥DH, то DH⊥PK по теореме о трёх перпендикулярах. Необходимо найти cos∠DHD1
    Рассмотрим ΔPDK, он прямоугольный, точки P и K середины сторон призмы, найдём стороны треугольника:

DP = DC/2 = 6√5/2 = 3√5
DK = DA/2 = 12√5/2 = 6√5

    Гипотенузу PK найдём по теореме Пифагора:

    Площадь прямоугольного треугольника, это половина произведения катетов:

blank

    Площадь этого же треугольника через основание PK и высоту DH:

blank

    Зная, что площадь равна 45 найдём DH:

blank

blank

blank

    По теореме Пифагора найдём D1H в треугольнике в DHD1:

blank

    Находим cos∠DHD1:

blank

Ответ: 0,6.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 5 / 5. Количество оценок: 1

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время

В отзыве оставляйте контакт для связи, если хотите, что бы я вам ответил.