Через точку О пересечения диагоналей параллелограмма АВСD проведена прямая, пересекающая стороны АВ и CD в точках P и Q соответственно. Докажите, что отрезки BP и DQ равны.

Источник: ОГЭ Ященко 2022 (36 вар)

Решение:

Через точку О пересечения диагоналей параллелограмма АВСD проведена прямая, пересекающая стороны АВ и CD в точках P и Q соответственно.

    Рассмотрим ΔBOP и ΔDOQ. В них BО = ОD т.к. диагонали параллелограмма точкой пересечения делятся пополам, ∠BOP = ∠DOQ – как вертикальные, ∠PBO = ∠QDO – как накрест лежащие при параллельных прямых BA||СD и секущей BD.
    Значит, ΔBOP = ΔDOQ по стороне и двум прилежащим к ней углам. Отсюда следует равенство соответствующих сторон BP = DQ.

    Что и требовалось доказать.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 0 / 5. Количество оценок: 0

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставляйте контакт, если хотите, что бы я вам ответил.