Решение простейших тригонометрических уравнений вида: sin x = a , cos x = a, tg x = a , ctg x = a, где a – произвольное число.

Решите уравнение sin x = a, a ∈ [–1; 1]. 

УравнениеРешение
sin x = -1
sin x = -√3/2

sin x = -√2/2

sin x = -1/2
sin x = 0
sin x = 1/2

Частные случаи простейших тригонометрических уравнений

sin x = √2/2
sin x = √3/2

sin x = 1

Решите уравнение cos x = a, a ∈ [–1; 1].  

УравнениеРешение
cos x = -1
cos x = -√3/2
cos x = -√2/2
cos x = -1/2
cos x = 0
cos x = 1/2
cos x = √2/2
cos x = √3/2
cos x = 1

Решите уравнение tg x = a

УравнениеРешение
tg x = -√3
tg x = -1
tg x = -√3/3
tg x = 0
tg x = √3/3
tg x = 1
tg x = √3

Решите уравнение сtg x = a

УравнениеРешение
сtg x = -√3
сtg x = -1
сtg x = -√3/3
сtg x = 0
сtg x = √3/3
сtg x = 1
сtg x = √3

    Все эти значения удобно находить по тригонометрическому кругу: 

Тригонометрический круг тангенс

    Ключевые слова: синус, косинус, тангенс, котангенс, tan, cot, от икс, чему равен, минус, корень из, пи, pi, π, делить на, равно.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 0 / 5. Количество оценок: 0

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время

В отзыве оставь контакт для связи, если хочешь, что бы я тебе ответил.