Равнобокая трапеция АВСD разбивается диагональю АС на два равнобедренных треугольника. Определите, чему равен больший угол трапеции. Ответ дайте в градусах.

Решение:

    Получаем два равнобедренных треугольника ΔАВС и ΔDAC.

Равнобокая трапеция АВСD разбивается диагональю АС

    В них углы при основаниях равны:

∠ВАС = ∠ВСА
∠ACD = ∠ADC

    ∠CAD =∠ ACB, как внутренние накрест лежащие, при двух параллельных прямых и секущей.
   
∠А = ∠D, как углы при основании равнобедренной трапеции. ∠А состоит из двух равных углов обозначим их за х, тогда ∠D = 2х.
    В трапеции больший ∠С, его и надо найти.
    ∠С + ∠D = 180º, как внутренние односторонние, при двух параллельных прямых и секущей.
    Получаем уравнение:

х + + = 180º
5х =180
х = 180/5 = 36º

    ∠C = x + 2x = 3x = 3·36º = 108º

Ответ: 108.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 1 / 5. Количество оценок: 1

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставляйте контакт, если хотите, что бы я вам ответил.

  • Рубрика записиЕГЭ Ларин