На рисунке изображён график y = f′(x) – производной функции f (x), определённой на интервале (−9; 12) . В какой точке отрезка [−8; 11] функция f (x) принимает наибольшее значение?

На рисунке изображён график y = f'(x) — производной функции f (x), определённой на интервале (−9;12).

Источник задания: fipi.ru

Решение:

На рисунке изображён график y = f'(x) — производной функции f (x), определённой на интервале (−9;12)

    Наибольшее значение функции будет в одной из точек максимума. Точки максимума –7; 0; 7; 10 (производная меняет знак с + на –).
    Наибольшее значение будет в точке х = 7, т.к. перед ней наибольший промежуток возрастания функции (+ был 5 клеток).

Ответ: 7.