На рисунке изображён график 𝑦 = 𝐹(𝑥) одной из первообразных некоторой функции 𝑓(𝑥) и отмечены десять точек на оси абсцисс: 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10. В скольких из этих точек функция 𝑓(𝑥) положительна?

На рисунке изображён график 𝑦 = 𝐹(𝑥) одной из первообразных некоторой функции 𝑓(𝑥) и отмечены десять точек на оси абсцисс 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10.

Источник: fipi

Решение:

    Найдём производную от F(x) и f(x):

F(x) = F′(x) = f(x)
f(x) = f′(x)

    Получается нам дан график функции f(x) и спрашивают в скольких точках производная f′(x) положительна.

На рисунке изображён график 𝑦 = 𝐹(𝑥) одной из первообразных некоторой функции 𝑓(𝑥) и отмечены десять точек на оси абсцисс 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10.

    Производная положительна на интервалах возрастания функции. Таких точек 7.

Ответ: 7.