Середина М стороны AD выпуклого четырёхугольника ABCD равноудалена от всех его вершин. Найдите AD, если ВС = 18, а углы В и С четырёхугольника равны соответственно 132° и 93°.

Источник: ОГЭ Ященко 2023 (36 вар)

Решение:

    Если M равноудалена от всех вершин выпуклого четырёхугольника ABCD, то его можно вписать в окружность с радиусами MA, MD, MC, MB. Нужно найти длину диаметра AD:

Середина М стороны AD выпуклого четырёхугольника ABCD равноудалена от всех его вершин.

    Сумма противолежащих углов вписанного в окружность четырёхугольника равна 180°:

∠С + ∠А = 180°
93° + ∠А = 180°
∠А = 180° – 93° = 87°

    ΔBMA – равнобедренный, т.к. МА = МВ, как радисы, значит углы при основании АВ равны:

∠А = ∠АВМ = 87°

    Найдём ∠МВС:

∠МВС = ∠В – ∠АВМ = 132° – 87° = 45°

    ΔBMС – равнобедренный, т.к. МС = МВ, как радисы, значит углы при основании ВС равны:

∠МВС = ∠МСВ = 45°

    Сумма углов любого треугольника равна 180°, найдём 3-й угол в ΔBMС:

∠ВМС = 180° – ∠МВС∠МСВ = 180° – 45°45° = 90°

    В ΔBMС по теореме синусов, найдём MB радиус окружности:

\frac{CB}{sin\angle BMC}=\frac{MB}{sin\angle MCB}\\\frac{18}{sin\:90°}=\frac{R}{sin\:45°}\\\frac{18}{1}=\frac{R}{\frac{\sqrt{2}}{2}}\\18=\frac{R\cdot 2}{\sqrt{2}}\:{\color{Blue} |: 2}\\9=\frac{R}{\sqrt{2}}\\R=9\sqrt{2}

    Найдём AD:

AD = 2·R = 2·9√2 = 18√2

Ответ: 18\sqrt{2}.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 5 / 5. Количество оценок: 2

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.