Прямая, параллельная стороне АС треугольника АВС, пересекает стороны АВ и ВС в точках М и N соответственно. Найдите BN, если МN = 16‚ АС = 20‚ NС = 15.

Источник: ОГЭ Ященко 2024 (36 вар)

Решение:

Прямая, параллельная стороне АС треугольника АВС, пересекает стороны АВ и ВС в точках М и N соответственно.

    Рассмотрим ΔВМN и ΔАВС, в них ∠В общий, ∠МNB = ∠АСВ, как соответственные при двух параллельных прямых MN||AC и секущей ВС.
    ΔВМN и ΔАВС подобны по двум равным углам. Значит пропорциональны соответствующие стороны:

\frac{MN}{AC}=\frac{BN}{BC}\\\frac{16}{20}=\frac{BN}{BN+NC}\\\frac{4}{5}=\frac{BN}{BN+15}
5·BN = 4·(BN + 15)
5BN = 4BN + 60
5BN – 4BN = 60
BN = 60

Ответ: 60.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 4.8 / 5. Количество оценок: 28

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, чтобы я тебе ответил.