Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите длину отрезка CM, если AB = 10, CD = 25, AC = 56.

Источник: statgrad

Решение:

Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M.

    Обозначим искомую сторону МС как х, тогда:

АМ = АС – МС = 56 – х

    ΔАМВ ∼ ΔDCM подобны по двум равным углам: ∠АМВ = ∠DMC, как вертикальные, ∠MAB = ∠MCD, как накрест лежащие при параллельных прямых АВ||DC и секущей АС. 
    Соответствующие стороны треугольников пропорциональны:

\frac{AB}{CD}=\frac{AM}{MC}\\\frac{10}{25}=\frac{56–x}{x}\\\frac{2}{5}=\frac{56–x}{x}

x = 5·(56 – x)
2x = 280 – 5x
2x + 5x = 280
7x = 280
x = 280/7 = 40

Ответ: 40.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 4.8 / 5. Количество оценок: 4

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.