Окружность с центром на стороне АС треугольника АВС проходит через вершину C и касается прямой АВ в точке В. Найдите диаметр окружности, если АВ = 2, АС = 8.
Источник: ОГЭ Ященко 2023 (36 вар)
Решение:
По теореме о секущей и касательной (подробно о ней здесь):
Если из одной точки к окружности проведены секущая (АС) и касательная (АB), то произведение всей секущей (АС) на ее внешнюю часть (АD) равно квадрату отрезка касательной (АB).
АС·АD = АB2
АС·(AC – DC) = АB2
8·(8 – DC) = 22
64 – 8·DC = 4
64 – 4 = 8·DC
60 = 8·DC
{\color{Red}DC} =\frac{60}{8}={\color{Red} 7,5}
Ответ: 7,5.
Есть три секунды времени? Для меня важно твоё мнение!
Насколько понятно решение?
Средняя оценка: 4.3 / 5. Количество оценок: 30
Оценок пока нет. Поставь оценку первым.
Расскажи, что не так? Я исправлю в ближайшее время!
В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.