В равнобедренной трапеции АВСD с большим основанием АD биссектриса угла А пересекается с биссектрисой угла С в точке F, а также пересекает сторону СD в точке К. Известно, что угол АFС равен 150°. Найдите СК, если FК = 6√3.

Источник задания: ОГЭ 2021 Математика, И.В. Ященко. 36 вариантов.

Решение:

В равнобедренной трапеции АВСD с большим основанием АD биссектриса угла А

    По условию ∠АFC = 150°, ∠АFC и ∠СFK смежные их сумма равна 180°, найдём ∠СFK:

∠СFK = 180° – ∠АFC = 180° – 150° = 30°

    ∠СFK = ∠AFN = 30° как вертикальные углы
    Обозначим углы полученные делением биссектрисc за х и у. 

∠BCN = ∠NCD = x
∠BAK = ∠KAD = y

    Сумма противолежащих углов равнобедренной трапеции равна 180º, значит:

∠A + ∠C = 180°
2y + 2x = 180°
y + x = 90°
y = 90° – x

    ∠BCN = ∠DNC = x как накрест лежащие при BC||AD и секущей CN. 
    В ΔAFN сумма углов равна 180°, ∠ANF = 180° – x, как смежные.

y + 30° + 180° – x = 180°
y – x = –30°
Подставим значение у из прошлого уравнения:
90° – xx = –30°
– 2х = –120°

    По теореме синусов из ΔFCK найдём сторону СK:

12 = 2·CK

Ответ: 6.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 4 / 5. Количество оценок: 1

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставляйте контакт, если хотите, что бы я вам ответил.