Первый рабочий за час делает на 6 деталей больше, чем второй, и выполняет заказ, состоящий из 140 деталей, на 3 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий?

Источники: Основная волна ОГЭ 2022, ОГЭ Ященко 2022 (36 вар)

Решение:

    Пусть второй рабочий делает за час х деталей, тогда первый рабочий х + 6 деталей.
    Второй рабочий выполнит заказ \frac{140}{x} за  часов, а первый \frac{140}{x+6} часов. Зная, что первый рабочий выполняет заказ на 3 часа быстрее, чем второй, составим уравнение: 

\frac{140}{x}-\frac{140}{x+6}=3\\\frac{140(x+6)-140x}{x(x+6)}=3\\\frac{140x+140\cdot 6-140x}{x(x+6)}=3\\\frac{840}{x^{2}+6x}=3
3(x2 + 6x) = 840
3x2 + 18x840 = 0 |:3
x2 + 6x280 = 0

  D = 62 – 4·1·(–280) = 1156 = 342

x_{1}=\frac{-6+34}{2\cdot 1}=\frac{28}{2}=14\\x_{2}=\frac{-6-34}{2\cdot 1}=\frac{-40}{2}=-20{\color{Blue} <0}

    Второй рабочий делает 14 деталей в час, тогда первый рабочий делает на 6 деталей больше:

14 + 6 = 20 деталей в час

Ответ: 20.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 4.5 / 5. Количество оценок: 62

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.