Теплоход проходит от пристани А до пристани В против течения реки за 10 часов, а по течению – за 6 часов 40 минут. Найдите расстояние между пристанями А и В, если скорость течения реки 2 км/ч. Ответ выразите в километрах.

Источник: Ященко ЕГЭ 2022 (30 вар).

Решение:

    Пусть х км/ч скорость теплохода в неподвижной воде, тогда его скорость по течению х + 2 км/ч, а против течения х – 2 км/ч
    По течению теплоход проплыл из А в В расстояние равное:

(х – 2)·10 км

    Против течения из В в А проплыл:

(х + 2)· км

    Зная, что это равное расстояние составим уравнение:

(х – 2)·10 = (х + 2)· 
(х – 2)·10 = (х + 2)·blank 

(х – 2)·10 = (х + 2)·blank  |·3 
(х – 2)·30 = (х + 2)·20
30x – 60 = 20x + 40
30x – 20x = 40 + 60
10x = 100

x = 100/10 = 10 км/ч

    Найдём расстояние от А до В:

(10 – 2)·10 = 8·10 = 80 км

Ответ: 80.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 3.5 / 5. Количество оценок: 4

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время

В отзыве оставляйте контакт для связи, если хотите, что бы я вам ответил.