Прямая, параллельная стороне АС треугольника АВС, пересекает стороны АВ и ВС в точках М и N соответственно, АС = 44‚ МN = 24. Площадь треугольника АВС равна 121. Найдите площадь треугольника MNB.

Прямая, параллельная стороне АС треугольника АВС, пересекает стороны АВ и ВС в точках М и N соответственно, АС = 44‚ МN = 24.

Источник: ОГЭ Ященко 2022 (36 вар)

Решение:

    ΔАВС и ΔMNB подобны по двум равным углам (∠В общий, ∠ВАС = ∠ВМN – как соответственные при параллельных прямых и секущей).
    Найдём коэффициент подобия треугольников:

    Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия:

blank

blank

blank

SΔMNB = 36

Ответ: 36.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 4 / 5. Количество оценок: 1

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставляйте контакт, если хотите, что бы я вам ответил.