Три конькобежца, скорости которых в некотором порядке образуют геометрическую прогрессию, одновременно стартуют (из одного места) по кругу. Через некоторое время второй конькобежец обгоняет первого, пробежав на 400 метров больше его. Третий конькобежец пробегает то расстояние, который пробежал первый к моменту обгона его вторым, за время на дробь, 2/3 мин больше, чем первый. Найдите скорость первого конькобежца в м/мин.

Источник задания: math-oge.sdamgia.ru

Решение:

    Из условия замечаем, что скорость 2-го конькобежца наибольшая, а скорость 3-го конькобежца наименьшая.
    Пусть b скорость 3-го конькобежца, зная, что их скорости образуют геометрическую прогрессию обозначим:

 Скорость
1-й конькобежецbq м/мин
2-й конькобежецbq2 м/мин
3-й конькобежецb м/мин

  где qзнаменатель геометрической прогрессии, во сколько раз увеличивается скорость следующего.

Через некоторое время второй конькобежец обгоняет первого, пробежав на 400 метров больше его.

    Обозначив время за t, получаем уравнение:

tbq2 tbq = 400 (1)

Третий конькобежец пробегает то расстояние, который пробежал первый к моменту обгона его вторым, за время на дробь, 2/3 мин больше, чем первый.

    Получаем второе уравнение:

   (2)

    Составим систему уравнений:

    Преобразуем, в (1) вынесем общий множитель tbq за скобку, (2) разделим на b:

blank

blank

blank

    Разделим (1) на (2) уравнение:

blank

blank

blank

    bq это как раз и есть скорость 1-го конькобежца которую надо было найти, она равна 600 м/мин.

Ответ: 600.