Найдите наибольшее значение функции y = 49x – 46sinx + 37 на отрезке [– blank;0].

Источники: fipi, os.fipi, Пробный ЕГЭ 2016, Досрочная волна 2015, Основная волна 2013.

Решение:

y = 49x – 46sinx + 37

    Найдём производную функции:

y′ = 49 – 46cosx

    Найдём нули функции:

49 – 46cosx = 0
– 46cosx = –49
cosx = корней нет

    Максимумов и минимумов у функции нет, она монотонна или всегда возрастает или всегда убывает, проверим концы отрезка:

y(– blank) = 49·(– blank) – 46sin(– blank) + 37 = 49·(– blank) – 46·(–1) + 37 = 49·(– blank) + 83
(такой ответ не сможем записать в бланк ЕГЭ)

y(0) = 49·0 – 46sin0 + 37 = 37

Ответ: 37.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 4.7 / 5. Количество оценок: 3

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время

В отзыве оставляйте контакт для связи, если хотите, что бы я вам ответил.